

Enabling Rust for Linux in Debian

Ben Hutchings · Kangrejos 2025 · Oviedo, Spain

Ben Hutchings

● Doing kernel development for various
employers and customers since 2008

● Member of Debian kernel team since
2009, working on configuration, build
system, integration, backporting, review...

● Former stable branch maintainer (3.2,
3.16)

● Frustrated C programmer
● Rust newbie

Debian project

● A community project:
● Funded by donations of money and resources
● Contributors mostly volunteers, but may be paid by outside organisation

● A constitutional democracy:
● Members take part in annual leadership elections and general resolutions
● Leader delegates specific powers and responsibilities
● Technical committee rules on disputes

● But mostly runs on do-ocracy:

The people who do the work, decide how to do it

Debian distribution

● Developers usually upload new source package versions to “unstable”
● Packages in unstable migrate into “testing” after several days,

depending on QA results, dependencies, closeness to release
● Every ~2 years testing becomes the new stable release

● Testing migration becomes progressively stricter, starting with a freeze on
new toolchain versions

● Most recently: Debian 13 “trixie”, 9 August 2025
● Each stable release supported for 5 years on most popular architectures

● Security updates made every few days
● Less urgent fixes aggregated into point releases every 2-4 months for first 3

years
● No new upstream feature releases allowed, with rare exceptions

Debian architecture support

1. Release architectures
● included in stable releases; supported for 3+ years
● most recently: Arm (v5, v7, v8), IBM Z, POWER LE, RISC-V 64, x86 (-32 and -64)
● Arm (v7, v8) and x86 supported for 5 years (LTS)

2. Main archive
● fully hosted on project infrastructure; expected to move to tier 1 or 3
● currently: MIPS64 LE

3. Ports
● hosted on mix of project and individual developer-hosted infrastructure
● not expected to meet release standards
● currently: Alpha, LoongArch 64, PA-RISC, Motorola 680x0, PowerPC (-32 and -64)

BE, Super-H 4, SPARC 64, x86 x32, x86 with Hurd kernel

Debian package builds

● Official packages are built natively for all supported architectures, on
project infrastructure

● Some upstreams do not support cross-building
● Build-time tests cannot be run when cross-building
● Packages may support cross-building for ease of development and to enable

bootstrapping
● Official builds are isolated, and we aim for reproducible builds:

● Each source package is built in a container with only “essential”, “build-
essential”, and its declared build-dependencies installed

● Container has no network access during the build
➢ All build-dependencies must also be packaged or vendored

● GNU toolchain used for almost everything including kernel

Rust in Debian (1)

● Debian Rust team does most of the Rust packaging work:
● Defines a policy for packaging Rust crates
● Develops tools to (mostly) automate the policy and create a local Cargo

registry from installed packages
● Maintains packages of Rust compiler, Cargo, and many crates (~3000

source packages in unstable)

● Other developers can also package Rust software, but are expected to
follow the same policy

● Due to the unstable ABI, “binary” packages for library crates actually
contain source code

● Library crates tested at build time with 0/1/all features enabled

Rust in Debian (2)

● Compiler (rustc package) usually close to upstream in unstable, but
subject to toolchain freeze ~6 months before a stable release

● Backported compiler (rustc-web package) provided in stable for
building few applications that need to move to new upstream versions

● Choice of crates to package is mostly driven by applications and their
dependencies

● Kernel could be one of those “applications” if it doesn’t vendor required
crates

● Rust developers expected to install library crates with Cargo, not APT

Security woes of static linking

● Debian policy: don’t duplicate source code; use shared libraries
➢ Allows most security issues to be addressed with a single source upload and

rebuild
● Rust and Go applications tend to statically link large numbers of libraries

➢ Fixing security issue in a library requires rebuilding all reverse-
dependencies, resulting in long build queues for security updates

● Debian infrastructure for mass-rebuilding reverse-dependencies was
designed for unstable, not stable security updates

➢ Rust and Go security updates may be deferred to a point release
● This does not prevent leaf packages getting their own security updates

● Example: Firefox ESR (but it relies on vendoring)

Linux kernel in Debian (1)

● Debian kernel team packages Linux kernel and closely related software
● Small patch set; we aim for “upstream first” so we don’t need to forward-port
● Each Debian stable release follows an upstream “longterm” stable branch:

● Debian 12 “bookworm” follows Linux 6.1.y
● Debian 13 “trixie” follows Linux 6.12.y
● Debian 14 “forky” will probably follow 2026 longterm branch

● testing and unstable currently have 6.16.y, but will keep moving to new
upstream versions until freezing in preparation for “forky”

● Each stable release also gets backport of kernel from next release or
unstable

● Backports are built using the toolchain and other build-deps from the older
release

Linux kernel in Debian (2)

● Out-of-tree module packages contain source to be built on end user
systems

● Current source package supports this by building multiple binary
packages:

● linux-kbuild-VERSION: The kernel build system and tools, including
conf, objtool, etc.

– Some tools built multiple times for different target architectures, with
wrappers to select the right version

● linux-headers-VERSION-common: Static kernel headers
● linux-headers-VERSION-FLAVOUR: .config, generated kernel

headers, etc. for a single kernel “flavour”
● Later OOT module builds may be native or cross, using build architecture’s

linux-kbuild and host architecture’s linux-headers

Enabling Rust for Linux in Debian

● Debian Bananas team maintains unofficial package based on Asahi
kernel, with RfL enabled as dependency of graphics drivers

● I have an open merge request to enable RfL in the official kernel
package, including support for building out-of-tree modules

● Open problem: support for cross-building and OOT modules
● RfL builds .rmeta and .so files that depend on both the build architecture

and .config, which doesn’t fit into the current scheme

➢ May need to rebuild these files during OOT module build, but how?

➢ Changing build architecture between kernel and OOT module build should
not affect kernel ABI; is this true for rustc?

➢ Maybe OOT module support should be deferred to later?

Questions?

Credits & License

● Content by Ben Hutchings
www.decadent.org.uk/ben/talks/
License: GPL-2+

● Original OpenOffice.org template by Raphaël Hertzog
raphaelhertzog.com/go/ooo-template
License: GPL-2+

● Background based on “Serenity” theme by Edward Padilla
wiki.debian.org/DebianArt/Themes/serenity
License: GPL-2

https://www.decadent.org.uk/ben/talks/
http://raphaelhertzog.com/go/ooo-template
https://wiki.debian.org/DebianArt/Themes/serenity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

