Enabling Rust for Linux in Debian

Ben Hutchings - Kangrejos 2025 - Oviedo, Spain



Ben Hutchings

Doing kernel development for various
employers and customers since 2008

Member of Debian kernel team since
2009, working on configuration, build
system, integration, backporting, review...

Former stable branch maintainer (3.2,
3.16)

Frustrated C programmer
Rust newbie



Debian project

e A community project:
* Funded by donations of money and resources
* Contributors mostly volunteers, but may be paid by outside organisation
e A constitutional democracy:
« Members take part in annual leadership elections and general resolutions
* Leader delegates specific powers and responsibilities
* Technical committee rules on disputes
e But mostly runs on do-ocracy:

The people who do the work, decide how to do it



Debian distribution

Developers usually upload new source package versions to “unstable”

Packages in unstable migrate into “testing” after several days,
depending on QA results, dependencies, closeness to release

Every ~2 years testing becomes the new stable release

* Testing migration becomes progressively stricter, starting with a freeze on
new toolchain versions

* Most recently: Debian 13 “trixie”, 9 August 2025
Each stable release supported for 5 years on most popular architectures
* Security updates made every few days

* Less urgent fixes aggregated into point releases every 2-4 months for first 3
years

* No new upstream feature releases allowed, with rare exceptions



Debian architecture support

1. Release architectures
* included in stable releases; supported for 3+ years
* most recently: Arm (v5, v7, v8), IBM Z, POWER LE, RISC-V 64, x86 (-32 and -64)
* Arm (v7, v8) and x86 supported for 5 years (LTS)
2. Main archive
* fully hosted on project infrastructure; expected to move to tier 1 or 3
* currently: MIPS64 LE
3. Ports
* hosted on mix of project and individual developer-hosted infrastructure

* not expected to meet release standards

* currently: Alpha, LoongArch 64, PA-RISC, Motorola 680x0, PowerPC (-32 and -64)
BE, Super-H 4, SPARC 64, x86 x32, x86 with Hurd kernel



Debian package builds

Official packages are built natively for all supported architectures, on
project infrastructure

* Some upstreams do not support cross-building
* Build-time tests cannot be run when cross-building

* Packages may support cross-building for ease of development and to enable
bootstrapping

Official builds are isolated, and we aim for reproducible builds:

* Each source package is built in a container with only “essential”, “build-
essential”’, and its declared build-dependencies installed

* Container has no network access during the build
> All build-dependencies must also be packaged or vendored

GNU toolchain used for almost everything including kernel



Rust in Debian (1)

Debian Rust team does most of the Rust packaging work:
* Defines a policy for packaging Rust crates

* Develops tools to (mostly) automate the policy and create a local Cargo
registry from installed packages

* Maintains packages of Rust compiler, Cargo, and many crates (~3000
source packages in unstable)

Other developers can also package Rust software, but are expected to
follow the same policy

Due to the unstable ABI, “binary” packages for library crates actually
contain source code

Library crates tested at build time with 0/1/all features enabled



Rust in Debian (2)

Compiler (rustc package) usually close to upstream in unstable, but
subject to toolchain freeze ~6 months before a stable release

Backported compiler (rustc-web package) provided in stable for
building few applications that need to move to new upstream versions

Choice of crates to package is mostly driven by applications and their
dependencies

« Kernel could be one of those “applications” if it doesn’t vendor required
crates

* Rust developers expected to install library crates with Cargo, not APT



Security woes of static linking

* Debian policy: don’t duplicate source code; use shared libraries

> Allows most security issues to be addressed with a single source upload and
rebuild

* Rust and Go applications tend to statically link large numbers of libraries

> FiXing security issue in a library requires rebuilding all reverse-
dependencies, resulting in long build queues for security updates

* Debian infrastructure for mass-rebuilding reverse-dependencies was
designed for unstable, not stable security updates

> Rust and Go security updates may be deferred to a point release

* This does not prevent leaf packages getting their own security updates
* Example: Firefox ESR (but it relies on vendoring)



Linux kernel in Debian (1)

Debian kernel team packages Linux kernel and closely related software
Small patch set; we aim for “upstream first” so we don’t need to forward-port
Each Debian stable release follows an upstream “longterm” stable branch:

* Debian 12 “bookworm” follows Linux 6.1.y

* Debian 13 “trixie” follows Linux 6.12.y

* Debian 14 “forky” will probably follow 2026 longterm branch

testing and unstable currently have 6.16.y, but will keep moving to new
upstream versions until freezing in preparation for “forky”

Each stable release also gets backport of kernel from next release or
unstable

* Backports are built using the toolchain and other build-deps from the older
release



Linux kernel in Debian (2)

Out-of-tree module packages contain source to be built on end user
systems

Current source package supports this by building multiple binary
packages:

* linux-kbuild-VERSION: The kernel build system and tools, including
conf, objtool, etc.

— Some tools built multiple times for different target architectures, with
wrappers to select the right version

* linux-headers-VERSION-common: Static kernel headers
* Llinux-headers-VERSION-FLAVOUR: .config, generated kernel
headers, etc. for a single kernel “flavour”

* Later OOT module builds may be native or cross, using build architecture’s
linux-kbuild and host architecture’s linux-headers



Enabling Rust for Linux in Debian

Debian Bananas team maintains unofficial package based on Asanhi
kernel, with RfL enabled as dependency of graphics drivers

| have an open merge request to enable RfL in the official kernel
package, including support for building out-of-tree modules

Open problem: support for cross-building and OOT modules

 RfL builds .rmeta and . so files that depend on both the build architecture
and .config, which doesn't fit into the current scheme

> May need to rebuild these files during OOT module build, but how?

> Changing build architecture between kernel and OOT module build should
not affect kernel ABI; is this true for rustc?

> Maybe OOT module support should be deferred to later?



Questions?




ntent by Ben Hutchings
/w.decadent.org.uk/ben/talks/

-~ Original OpenOffice.org template by Raphaél Hertzog
- raphaelhertzog.com/go/ooo-template
License: GPL-2+

Background based on “Serenity” theme by Edward Padilla
wiki.debian.org/DebianArt/Themes/serenity
icense: GPL-2



https://www.decadent.org.uk/ben/talks/
http://raphaelhertzog.com/go/ooo-template
https://wiki.debian.org/DebianArt/Themes/serenity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

