What's new In the Linux kernel

and what’s missing in Debian

Ben Hutchings - DebConf 2025, Brest, France

Ben Hutchings

Working on Linux kernel and related code
for Debian and in paid jobs for about 15
years

Debian kernel and LTS team member,
doing various kernel packaging and
backporting work

mainline: 616-rcé 2025-07-13 L|nux keeps Chang|ng

ctable: 6156 Z2025-07-10

longterm: &.12.3/7 2025-07-10

longterm: 6.6.97 Z2025-07-10 . .

longterm: 61144 So0e0r0 | ¢ LiInus makes a release with new features every
longterm: 515187 2025-07-10 9-10 weeks

longterm: 510239 2025-06-27 c

ongterm: 54295 Sooc0e07 | ¢ Larger features may take multiple releases to

linux-next: next-20250714 2025-07-14 become useful

 Some features need changes elsewhere to enable them:
* - New user-space management tool
« New version of existing user-space tool
* Applications and libraries using new API
 Packaging or infrastructure changes

 |'ll talk about new features in Linux 6.13 to 6.16 inclusive

Recap of previous years’ features

10_uring: Support for pipe create and zero-copy receive ops; also ring
resizing, hybrid polling, ...

ID-mapped mounts: Nested ID-mapping allowed

Rust:

 Many more bindings: filesystem, memory management, time and timers, PCI
and platform devices, clock control, cpufreq, DRM, ...

. Supported on 32-bit Arm (v7 only)

« Sitill no large drivers upstream, but skeleton of nova driver for newer Nvidia
GPUs is there

bcachefs: Probably on the way out due to continuing conflicts between
developers

Preemption options (1)

 Thread running in user-space can be preempted at any time
by higher priority threads, or when their “time slice” ends

 For athread in the kernel this is not so simple:

It may disable preemption while accessing per-CPU state
It may disable interrupts while accessing state shared with interrupt handler
Keeping track of preemptibility has some performance cost

* Longstanding compile-time options for when to allow preemption:

PREEMPT_NONE: At specific points if time slice expired (max throughput)
PREEMPT_VOLUNTARY: At specific points (compromise)

PREEMPT: Any time not holding spinlock or explicitly disabled (min latency)
PREEMPT_RT: Almost any time (min worst-case latency)

Preemption options (2)

Debian chose to set PREEMPT_VOLUNTARY, with alternate
builds setting PREEMPT_RT on some architectures

* But wait, there’s more:
* PREEMPT_DYNAMIC: Boot-time choice between all except PREEMPT_RT
- Available for arm64, loongarch, riscv, x86, s390 [6.13], powerpc [6.16]
- Enabled for amd64 but now possible for all 64-bit release architectures

- PREEMPT_LAZY: Similar to PREEMPT, but defers preemption by non-RT
tasks up to 1 timer tick; meant to replace PREEMPT_{NONE,VOLUNTARY}

- Impact on throughput is lower because victim task usually exits kernel
within 1 tick and is preempted then anyway

— Still provides fairly low latency for RT tasks

— Available for all the same architectures and enabled in Debian

Large atomic writes (1)

Relational database systems (RDBMSs) implement ACID transactions

> Atomic: a transaction must be seen as having happened completely or not
at all, even if the system crashes

Writing a single logical block of storage (usually 4 kiB) is atomic, but
most RDBMSs work with larger blocks (16 kiB for MySQL or Postgres)

> RDBMS recovering from a crash must be able to handle the last write being
“torn”, with the block now containing part old and part new data

NVMe and some SCSI devices support atomically writing larger blocks,
but they must be properly aligned

> e.g. with 4 kiB logical block size, a 16 kiB atomic write must start at LBA
divisible by 4

Large atomic writes (2)

* Some filesystems and stacked block devices now support this if
underlying devices do:

* ext4
* XFS (requires setting FORCEALIGN flag on inode)
* md-RAID: modes 0/1/10 only
* device-mapper: dm-linear (LVM2), dm-stripe, dm-raidl only
* UAPI extensions introduced for applications to take advantage of this:
* RWF_ATOMIC flag for pwritev2() and io_uring write ops
* STATX_WRITE_ATOMIC flag for statx () to query atomic write limits

> LLarge atomic writes allow for more efficient write sequence; LWN quoted
Ted Ts’o claiming “60-100% improvement in [MySQL] performance”

JeBPF

Resilient queued spinlocks (rqspinlocks) support deadlock detection and
recovery

* Nested acquisition of spinlocks not allowed, but with rgspinlocks this is OK
Atomic load-acquire and store-release instructions

* Atomic read-modify-write instructions already existed but are slow

« Some lockless algorithms will benefit from using these instead

« Supported by core interpreter and JITs for arm64, riscv, x86_64
Red-black tree (rbtree) traversal without removing

Improved list traversal: peek at first/last without removing

Script execution control

* Some systems have a security policy restricting which executables can run

Implemented through an LSM such as SELinux
Depends on execve () opening the file for execution

* This does not restrict scripts:

execve(“script”, ..) doesopen script for execution

but this can be evaded with: execve(“/usr/bin/interp”, &{“interp”,
“script”, NULL}, ..)

> User-space script interpreters need to participate in policy enforcement

New API for this: execveat (.., AT_EXECVE_CHECK)

All script interpreters should call this for the script file descriptor (usually) or
name (when searching a path)

Dynamic linker should also call this for each shared library

lo_uring for FUSE (1)

FUSE allows Filesystem drivers to run in USErspace instead of the kernel,
offering several benefits to implementers:

Filesystem type Kernel FUSE
Implementation language | C, Rust? any
License | GPLv2 or compatible any

Portability

Linux kAPI not available
elsewhere

same/similar API supported
on many other OSes

Impact of bugs

system crash, system-
wide data loss, kernel
compromise

filesystem loss, account
compromise if not
sandboxed

Performance

generally higher

generally lower

lo_uring for FUSE (2)

Performance is the weak point:
* Communication through single fd per mount — can be a bottleneck
* Operations generally require at least twice as many context switches

ublk (user-space block drivers) APl avoided some of this by using
l0_uring in reverse:

1. Driver submits request for block 1/O (D1)

2. Kernel completes D1 with a block I/O request (K1)

3. Driver submits request for block 1/0 (D2), containing response to K1

* All of this can run asynchronously and using separate rings per CPU
Linux now supports the same model for FUSE drivers

* Setup, notifications and interrupts still done through /dev/fuse

Secure Boot Advanced Targetting (SBAT)

UEFI Secure Boot includes block-list (dbx) of boot components that should
no longer be trusted despite being properly signed

* dbx is EFI variable containing hashes of certificates and binaries

* ...but variable storage is limited, while set of insecure binaries keeps growing
SBAT introduced a “security generation” per component:

* Security generation is incremented after each SB-relevant fix

* Minimum generation per component stored in EFI variables

** Boot loader checks both signatures and security generations
Already implemented in shim and GRUB (and Windows)
Linux starting to support embedding SBAT security generation:

* [6.16] arm64, loongarch, riscv

* [6.17] x86

Packaging changes (1)

e Architecture and flavour updates:
‘ * rt featureset replaced with rt flavours
— Not yet available for armhf, and no 1915 driver
* [sh4] Removed broken sh7785lcr flavour
* Binary package updates:
* linux-misc-tools added (in Git); will allow building firmware-free from source

* linux-support-ABINAME removed; was only used by src:firmware-
{free,nonfree} which now copy required Python package from src:linux

* Kernel compressed with zstd on most architectures instead of xz
 BTF generation works for external modules

Packaging changes (2)

* ABI name suffix configurable per suite, and will be
»f “+debREL” in Debian stable and unstable

 Compiler dependencies simplified to gcc-VER-for-host

e Support for kernel image hooks installed under
/usr/share/kernel (for use in forky)

debian/bin/test-patches now works without SEMAIL or
$DEBEMAIL set

Bug script includes modprobe configuration, after several bug reports
caused by a third party adding a blacklist directive

Git branches renamed to debian/UPSTREAM-VER/CODENAME and
debian/latest, approximately following DEP-14

Packaging changes (3)

Configuration changes to add or improve support for:
[amd64] AMD “Renoir”, SEV; Intel “Whiskey Cove”, TDX

[amd64,arm64] AWS Nitro Enclaves

[arm64] Arm Confidential Compute Architecture; Google Pixel 6; Lenovo
Thinkpad X13s; various MediaTek SoCs; Qualcomm SC7180

[armhf] STMicro STM32MP15x
loong64] Loongson LS7A1000/2000
riscve4] Sophgo SG204x; SpacemiT SoCs; T-Head C900, TH1520

]

Questions?

ntent by Ben Hutchings
/w.decadent.org.uk/ben/talks/

~ Original OpenOffice.org template by Raphaél Hertzog
raphaelhertzog.com/go/ooo-template
License: GPL-2+

BaCkground based on “Serenity” theme by Edward Padilla
wiki.debian.org/DebianArt/Themes/serenity

https://www.decadent.org.uk/ben/talks/
http://raphaelhertzog.com/go/ooo-template
https://wiki.debian.org/DebianArt/Themes/serenity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

