

What’s new in the Linux kernel
and what’s missing in Debian

Ben Hutchings · DebConf 2025, Brest, France

Ben Hutchings

● Working on Linux kernel and related code
for Debian and in paid jobs for about 15
years

● Debian kernel and LTS team member,
doing various kernel packaging and
backporting work

Linux keeps changing

● Some features need changes elsewhere to enable them:
● New user-space management tool
● New version of existing user-space tool
● Applications and libraries using new API
● Packaging or infrastructure changes

● I'll talk about new features in Linux 6.13 to 6.16 inclusive

● Linus makes a release with new features every
9-10 weeks

● Larger features may take multiple releases to
become useful

Recap of previous years’ features

● io_uring: Support for pipe create and zero-copy receive ops; also ring
resizing, hybrid polling, ...

● ID-mapped mounts: Nested ID-mapping allowed
● Rust:

● Many more bindings: filesystem, memory management, time and timers, PCI
and platform devices, clock control, cpufreq, DRM, ...

● Supported on 32-bit Arm (v7 only)
● Still no large drivers upstream, but skeleton of nova driver for newer Nvidia

GPUs is there

● bcachefs: Probably on the way out due to continuing conflicts between
developers

Preemption options (1)

● For a thread in the kernel this is not so simple:
● It may disable preemption while accessing per-CPU state
● It may disable interrupts while accessing state shared with interrupt handler
● Keeping track of preemptibility has some performance cost

● Longstanding compile-time options for when to allow preemption:
● PREEMPT_NONE: At specific points if time slice expired (max throughput)
● PREEMPT_VOLUNTARY: At specific points (compromise)
● PREEMPT: Any time not holding spinlock or explicitly disabled (min latency)
● PREEMPT_RT: Almost any time (min worst-case latency)

● Thread running in user-space can be preempted at any time
by higher priority threads, or when their “time slice” ends

Preemption options (2)

● But wait, there’s more:
● PREEMPT_DYNAMIC: Boot-time choice between all except PREEMPT_RT

– Available for arm64, loongarch, riscv, x86, s390 [6.13], powerpc [6.16]
– Enabled for amd64 but now possible for all 64-bit release architectures

● PREEMPT_LAZY: Similar to PREEMPT, but defers preemption by non-RT
tasks up to 1 timer tick; meant to replace PREEMPT_{NONE,VOLUNTARY}

– Impact on throughput is lower because victim task usually exits kernel
within 1 tick and is preempted then anyway

– Still provides fairly low latency for RT tasks
– Available for all the same architectures and enabled in Debian

● Debian chose to set PREEMPT_VOLUNTARY, with alternate
builds setting PREEMPT_RT on some architectures

Large atomic writes (1)

● Relational database systems (RDBMSs) implement ACID transactions

➢ Atomic: a transaction must be seen as having happened completely or not
at all, even if the system crashes

● Writing a single logical block of storage (usually 4 kiB) is atomic, but
most RDBMSs work with larger blocks (16 kiB for MySQL or Postgres)

➢ RDBMS recovering from a crash must be able to handle the last write being
“torn”, with the block now containing part old and part new data

● NVMe and some SCSI devices support atomically writing larger blocks,
but they must be properly aligned

➢ e.g. with 4 kiB logical block size, a 16 kiB atomic write must start at LBA
divisible by 4

Large atomic writes (2)

● Some filesystems and stacked block devices now support this if
underlying devices do:

● ext4
● XFS (requires setting FORCEALIGN flag on inode)
● md-RAID: modes 0/1/10 only
● device-mapper: dm-linear (LVM2), dm-stripe, dm-raid1 only

● UAPI extensions introduced for applications to take advantage of this:
● RWF_ATOMIC flag for pwritev2() and io_uring write ops
● STATX_WRITE_ATOMIC flag for statx() to query atomic write limits

➢ Large atomic writes allow for more efficient write sequence; LWN quoted
Ted Ts’o claiming “60-100% improvement in [MySQL] performance”

● Resilient queued spinlocks (rqspinlocks) support deadlock detection and
recovery

● Nested acquisition of spinlocks not allowed, but with rqspinlocks this is OK

● Atomic load-acquire and store-release instructions
● Atomic read-modify-write instructions already existed but are slow
● Some lockless algorithms will benefit from using these instead
● Supported by core interpreter and JITs for arm64, riscv, x86_64

● Red-black tree (rbtree) traversal without removing
● Improved list traversal: peek at first/last without removing

Script execution control

● Some systems have a security policy restricting which executables can run
● Implemented through an LSM such as SELinux
● Depends on execve() opening the file for execution

● This does not restrict scripts:
● execve(“script”, …) does open script for execution
● but this can be evaded with: execve(“/usr/bin/interp”, &{“interp”,

“script”, NULL}, …)

➢ User-space script interpreters need to participate in policy enforcement
● New API for this: execveat(…, AT_EXECVE_CHECK)
● All script interpreters should call this for the script file descriptor (usually) or

name (when searching a path)
● Dynamic linker should also call this for each shared library

io_uring for FUSE (1)

FUSE allows Filesystem drivers to run in USErspace instead of the kernel,
offering several benefits to implementers:

Filesystem type Kernel FUSE

Implementation language C, Rust? any

License GPLv2 or compatible any

Portability Linux kAPI not available
elsewhere

same/similar API supported
on many other OSes

Impact of bugs system crash, system-
wide data loss, kernel
compromise

filesystem loss, account
compromise if not
sandboxed

Performance generally higher generally lower

io_uring for FUSE (2)

● Performance is the weak point:
● Communication through single fd per mount — can be a bottleneck
● Operations generally require at least twice as many context switches

● ublk (user-space block drivers) API avoided some of this by using
io_uring in reverse:
1. Driver submits request for block I/O (D1)

2. Kernel completes D1 with a block I/O request (K1)

3. Driver submits request for block I/O (D2), containing response to K1
● All of this can run asynchronously and using separate rings per CPU

● Linux now supports the same model for FUSE drivers
● Setup, notifications and interrupts still done through /dev/fuse

Secure Boot Advanced Targetting (SBAT)

● UEFI Secure Boot includes block-list (dbx) of boot components that should
no longer be trusted despite being properly signed

● dbx is EFI variable containing hashes of certificates and binaries
● …but variable storage is limited, while set of insecure binaries keeps growing

● SBAT introduced a “security generation” per component:
● Security generation is incremented after each SB-relevant fix
● Minimum generation per component stored in EFI variables
● Boot loader checks both signatures and security generations

● Already implemented in shim and GRUB (and Windows)
● Linux starting to support embedding SBAT security generation:

● [6.16] arm64, loongarch, riscv
● [6.17] x86

Packaging changes (1)

● Binary package updates:
● linux-misc-tools added (in Git); will allow building firmware-free from source
● linux-support-ABINAME removed; was only used by src:firmware-

{free,nonfree} which now copy required Python package from src:linux

● Kernel compressed with zstd on most architectures instead of xz
● BTF generation works for external modules

● Architecture and flavour updates:
● rt featureset replaced with rt flavours

– Not yet available for armhf, and no i915 driver
● [sh4] Removed broken sh7785lcr flavour

Packaging changes (2)

● debian/bin/test-patches now works without $EMAIL or
$DEBEMAIL set

● Bug script includes modprobe configuration, after several bug reports
caused by a third party adding a blacklist directive

● Git branches renamed to debian/UPSTREAM-VER/CODENAME and
debian/latest, approximately following DEP-14

● ABI name suffix configurable per suite, and will be
“+debREL” in Debian stable and unstable

● Compiler dependencies simplified to gcc-VER-for-host
● Support for kernel image hooks installed under

/usr/share/kernel (for use in forky)

Packaging changes (3)

Configuration changes to add or improve support for:

[amd64] AMD “Renoir”, SEV; Intel “Whiskey Cove”, TDX

[amd64,arm64] AWS Nitro Enclaves

[arm64] Arm Confidential Compute Architecture; Google Pixel 6; Lenovo
Thinkpad X13s; various MediaTek SoCs; Qualcomm SC7180

[armhf] STMicro STM32MP15x

[loong64] Loongson LS7A1000/2000

[riscv64] Sophgo SG204x; SpacemiT SoCs; T-Head C900, TH1520

Questions?

Credits & License

● Content by Ben Hutchings
www.decadent.org.uk/ben/talks/
License: GPL-2+

● Original OpenOffice.org template by Raphaël Hertzog
raphaelhertzog.com/go/ooo-template
License: GPL-2+

● Background based on “Serenity” theme by Edward Padilla
wiki.debian.org/DebianArt/Themes/serenity
License: GPL-2

https://www.decadent.org.uk/ben/talks/
http://raphaelhertzog.com/go/ooo-template
https://wiki.debian.org/DebianArt/Themes/serenity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

