What's new in the Linux kernel

and what's missing in Debian

Ben Hutchings · DebConf 2025, Brest, France

Ben Hutchings

- Working on Linux kernel and related code for Debian and in paid jobs for about 15 years
- Debian kernel and LTS team member, doing various kernel packaging and backporting work

mainline:	6.16-rc6	2025-07-13
stable:	6.15.6	2025-07-10
longterm:	6.12.37	2025-07-10
longterm:	6.6.97	2025-07-10
longterm:	6.1.144	2025-07-10
longterm:	5.15.187	2025-07-10
longterm:	5.10.239	2025-06-27
longterm:	5.4.295	2025-06-27
linux-next:	next-20250714	2025-07-14

Linux keeps changing

- Linus makes a release with new features every 9-10 weeks
- Larger features may take multiple releases to become useful
- Some features need changes elsewhere to enable them:
 - New user-space management tool
 - New version of existing user-space tool
 - Applications and libraries using new API
 - Packaging or infrastructure changes
- I'll talk about new features in Linux 6.13 to 6.16 inclusive

Recap of previous years' features

- io_uring: Support for pipe create and zero-copy receive ops; also ring resizing, hybrid polling, ...
- ID-mapped mounts: Nested ID-mapping allowed
- Rust:
 - Many more bindings: filesystem, memory management, time and timers, PCI and platform devices, clock control, cpufreq, DRM, ...
 - Supported on 32-bit Arm (v7 only)
 - Still no large drivers upstream, but skeleton of nova driver for newer Nvidia GPUs is there
- bcachefs: Probably on the way out due to continuing conflicts between developers

Preemption options (1)

- Thread running in user-space can be preempted at any time by higher priority threads, or when their "time slice" ends
- For a thread in the kernel this is not so simple:
 - It may disable preemption while accessing per-CPU state
 - It may disable interrupts while accessing state shared with interrupt handler
 - Keeping track of preemptibility has some performance cost
- Longstanding compile-time options for when to allow preemption:
 - PREEMPT_NONE: At specific points if time slice expired (max throughput)
 - PREEMPT_VOLUNTARY: At specific points (compromise)
 - PREEMPT: Any time not holding spinlock or explicitly disabled (min latency)
 - PREEMPT_RT: Almost any time (min worst-case latency)

Preemption options (2)

- Debian chose to set PREEMPT_VOLUNTARY, with alternate builds setting PREEMPT_RT on some architectures
- But wait, there's more:
 - PREEMPT_DYNAMIC: Boot-time choice between all except PREEMPT_RT
 - Available for arm64, loongarch, riscv, x86, s390 [6.13], powerpc [6.16]
 - Enabled for amd64 but now possible for all 64-bit release architectures
 - PREEMPT_LAZY: Similar to PREEMPT, but defers preemption by non-RT tasks up to 1 timer tick; meant to replace PREEMPT_{NONE,VOLUNTARY}
 - Impact on throughput is lower because victim task usually exits kernel within 1 tick and is preempted then anyway
 - Still provides fairly low latency for RT tasks
 - Available for all the same architectures and enabled in Debian

Large atomic writes (1)

- Relational database systems (RDBMSs) implement ACID transactions
 - Atomic: a transaction must be seen as having happened completely or not at all, even if the system crashes
- Writing a single logical block of storage (usually 4 kiB) is atomic, but most RDBMSs work with larger blocks (16 kiB for MySQL or Postgres)
 - > RDBMS recovering from a crash must be able to handle the last write being "torn", with the block now containing part old and part new data
- NVMe and some SCSI devices support atomically writing larger blocks, but they must be properly aligned
 - e.g. with 4 kiB logical block size, a 16 kiB atomic write must start at LBA divisible by 4

Large atomic writes (2)

- Some filesystems and stacked block devices now support this if underlying devices do:
 - ext4
 - XFS (requires setting FORCEALIGN flag on inode)
 - md-RAID: modes 0/1/10 only
 - device-mapper: dm-linear (LVM2), dm-stripe, dm-raid1 only
- UAPI extensions introduced for applications to take advantage of this:
 - RWF_ATOMIC flag for pwritev2() and io_uring write ops
 - STATX_WRITE_ATOMIC flag for statx() to query atomic write limits
- Large atomic writes allow for more efficient write sequence; LWN quoted Ted Ts'o claiming "60-100% improvement in [MySQL] performance"

- Resilient queued spinlocks (rqspinlocks) support deadlock detection and recovery
 - Nested acquisition of spinlocks not allowed, but with rqspinlocks this is OK
- Atomic load-acquire and store-release instructions
 - Atomic read-modify-write instructions already existed but are slow
 - Some lockless algorithms will benefit from using these instead
 - Supported by core interpreter and JITs for arm64, riscv, x86_64
- Red-black tree (rbtree) traversal without removing
- Improved list traversal: peek at first/last without removing

Script execution control

- Some systems have a security policy restricting which executables can run
 - Implemented through an LSM such as SELinux
 - Depends on execve() opening the file for execution
- This does not restrict scripts:
 - execve("script", ...) does open script for execution
 - but this can be evaded with: execve("/usr/bin/interp", &{"interp", "script", NULL}, ...)
- User-space script interpreters need to participate in policy enforcement
 - New API for this: execveat (..., AT_EXECVE_CHECK)
 - All script interpreters should call this for the script file descriptor (usually) or name (when searching a path)
 - Dynamic linker should also call this for each shared library

io_uring for FUSE (1)

FUSE allows Filesystem drivers to run in USErspace instead of the kernel, offering several benefits to implementers:

	Filesystem type	Kernel	FUSE
Imp	lementation language	C, Rust?	any
	License	GPLv2 or compatible	any
	Portability	Linux kAPI not available elsewhere	same/similar API supported on many other OSes
	Impact of bugs	system crash, system- wide data loss, kernel compromise	filesystem loss, account compromise if not sandboxed
	Performance	generally higher	generally lower

io_uring for FUSE (2)

- Performance is the weak point:
 - Communication through single fd per mount can be a bottleneck
 - Operations generally require at least twice as many context switches
- ublk (user-space block drivers) API avoided some of this by using io_uring in reverse:
 - 1. Driver submits request for block I/O (D1)
 - 2. Kernel completes D1 with a block I/O request (K1)
 - 3. Driver submits request for block I/O (D2), containing response to K1
 - All of this can run asynchronously and using separate rings per CPU
- Linux now supports the same model for FUSE drivers
 - Setup, notifications and interrupts still done through /dev/fuse

Secure Boot Advanced Targetting (SBAT)

- UEFI Secure Boot includes block-list (dbx) of boot components that should no longer be trusted despite being properly signed
 - dbx is EFI variable containing hashes of certificates and binaries
 - ...but variable storage is limited, while set of insecure binaries keeps growing
- SBAT introduced a "security generation" per component:
 - Security generation is incremented after each SB-relevant fix
 - Minimum generation per component stored in EFI variables
 - Boot loader checks both signatures and security generations
- Already implemented in shim and GRUB (and Windows)
- Linux starting to support embedding SBAT security generation:
 - [6.16] arm64, loongarch, riscv
 - [6.17] x86

Packaging changes (1)

- Architecture and flavour updates:
 - rt featureset replaced with rt flavours
 - Not yet available for armhf, and no i915 driver
 - [sh4] Removed broken sh7785lcr flavour
- Binary package updates:
 - linux-misc-tools added (in Git); will allow building firmware-free from source
 - **linux-support-***ABINAME* removed; was only used by src:firmware-{free,nonfree} which now copy required Python package from src:linux
- Kernel compressed with zstd on most architectures instead of xz
- BTF generation works for external modules

Packaging changes (2)

- ABI name suffix configurable per suite, and will be "+debREL" in Debian stable and unstable
- Compiler dependencies simplified to gcc-VER-for-host
- Support for kernel image hooks installed under /usr/share/kernel (for use in forky)
- debian/bin/test-patches now works without \$EMAIL or \$DEBEMAIL set
- Bug script includes modprobe configuration, after several bug reports caused by a third party adding a blacklist directive
- Git branches renamed to debian/UPSTREAM-VER/CODENAME and debian/latest, approximately following DEP-14

Packaging changes (3)

Configuration changes to add or improve support for:

[amd64] AMD "Renoir", SEV; Intel "Whiskey Cove", TDX

[amd64,arm64] **AWS** Nitro Enclaves

[arm64] Arm Confidential Compute Architecture; **Google** Pixel 6; **Lenovo** Thinkpad X13s; various **MediaTek** SoCs; **Qualcomm** SC7180

[armhf] **STMicro** STM32MP15x

[loong64] Loongson LS7A1000/2000

[riscv64] Sophgo SG204x; SpacemiT SoCs; T-Head C900, TH1520

Credits & License

 Content by Ben Hutchings www.decadent.org.uk/ben/talks/

License: GPL-2+

 Original OpenOffice.org template by Raphaël Hertzog raphaelhertzog.com/go/ooo-template

License: GPL-2+

 Background based on "Serenity" theme by Edward Padilla wiki.debian.org/DebianArt/Themes/serenity

License: GPL-2