

What’s new in the Linux kernel
and what’s missing in Debian

Ben Hutchings · DebConf 23

Ben Hutchings

● Working on Linux kernel and related code
for Debian and in paid jobs for about 15
years

● Debian kernel and LTS team member,
doing various kernel packaging and
backporting work

● Formerly maintained Linux long-term
stable branches needed by Debian

Linux releases early and often

● Some will need changes elsewhere to be useful:

● New user-space tool to configure it
● New version of existing user-space tool
● Applications and libraries using new API
● Packaging or infrastructure changes

● I'll talk about new features in Linux 5.19 to 6.5 inclusive

● Linux has feature releases about 5 times a
year, plus stable updates every week or two

● Some features aren't really ready or
complete in their first kernel release

Recap of previous years’ features (1)

Added support for:
● ACPI
● Hibernation
● Relocatable kernel image (PIE)

Architecture extensions including:
● Vector extension (variable-length SIMD)
● 64 kiB TLB entries

Recap of previous years’ features (2)

● Multi-shot accept
● Extended attribute (xattr) operations
● Zero-copy network transmit
● Parallel direct I/O (on some filesystems)
● Multi-shot timers
● Rings in user-space memory

io_uring

Recap of previous years’ features (3)

Now supported by more filesystems:
● overlayfs
● squashfs
● tmpfs

Can be used by:
● crun, LXC, and other container software
● mount (X-mount.idmap option)

● systemd

ID-mapped mounts

User-space block drivers [6.0]

● ublk block driver in kernel delegates to back-end drivers in
user-space

● Similar to what FUSE and CUSE do for filesystems and
character devices

● Uses io_uring for requests and responses to back-end
● Back-end drivers can use ublksrv library and daemon

(RFP: #1051678)

https://bugs.debian.org/1051678

Multi-generational LRU [6.1]

When RAM is nearly full, memory manager decides which pages of virtual
memory to keep in RAM and which to reclaim (swap or flush):

● Theory: reclaim the Least Recently Used (LRU) pages
● Practice: it’s impossible to track exactly when pages are accessed, so use

periodic scan and some heuristics
● Practice: sometimes LRU pages are needed again quite soon (thrashing)

MGLRU replaces the previous algorithms for determining LRU:
● Divides pages into 4 generations instead of just active/inactive
● Iterates over page tables rather than physical page frames
● Uses feedback loop (PID controller) to mitigate thrashing

MGLRU is enabled for most Debian architectures since Linux 6.4.

HID drivers in eBPF [6.3]

● HID (Human Interface Device) is a standard class for input devices on USB
or Bluetooth — includes keyboards, mice, game controllers, etc.

● HID devices provide descriptors of their capabilities, so most can be handled
by a single generic driver

● Some need special drivers to recognise custom keys, or to work around bugs
in the device’s descriptors

● The generic driver now supports doing those things, and many other kinds of
filtering, with an eBPF program

● Avoids the need to (re)build a custom driver for each kernel
● Should avoid security bugs in descriptor parsing
● No infrastructure yet for collecting and distributing such HID drivers
● Not yet enabled in Debian

Rust for Linux [ongoing]

● Rust is a modern systems programming language designed to ensure
memory-safety—preventing use-after-free, data races, etc.

● Many (most?) Linux kernel security vulnerabilities involve this sort of bug,
so using Rust instead of C could improve security a lot

● ...but replacing existing C code with Rust will be a long process
● ...and currently this is “experimental”, so no core subsystem can use it yet

● Minimal support for Rust landed in 6.1; more APIs added later
● Currently no in-tree features written in Rust, but several out-of-tree drivers:

● asahi — Apple GPU driver
● rnvme — rewrite of NVMe block driver
● rust_binder — rewrite of Binder IPC driver

In-kernel TLS [ongoing]

● Trusting the local network may have been reasonable in the ’80s, but is
rather naïve today

● Most network filesystems and storage protocols are unencrypted and
often unauthenticated, but this is now changing:

● NFS over TLS now supported (server in 6.4, client in 6.5)
● NVMe over TLS proposed; maybe available in 6.7
● no patches for iSCSI over TLS yet
● SMB has its own encryption and authentication

● TLS handshake and certificate validation are delegated to user-space:
● tlshd daemon packaged in ktls-utils
● Certificate validation still needs work; see upstream bug tracker

cachestat [6.5]

● New system call to query whether (part of) a file is cached in RAM
● Already possible with mincore, but by contrast cachestat:

● Does not require the pages to be mmapped

● Also exposes dirty and writeback states
● Provides summary statistics instead of per-page flags

● Expected to be useful for:
● Database engines such as PostgreSQL choosing whether to use an index
● Applications that explicitly prefetch data, such as SQLite, to monitor how well

this is working
● Visibility of which files account for most memory usage

Netlink documentation [ongoing]

● Netlink is an extensible protocol used for configuring Linux networking
and many other kernel subsystems

● Documentation of the protocol has been minimal:
● It was supposed to replace socket ioctl-based APIs, but application

developers often found those easier to understand
● Even kernel networking developers introduced bugs in implementation that

are now part of the protocol

● The kernel source (and linux-doc packages, and online docs) now
include:

● A Netlink Handbook for user-space developers working with netlink sockets
● More minimal Netlink notes for kernel developers using its internal APIs

https://docs.kernel.org/userspace-api/netlink/
https://docs.kernel.org/core-api/netlink.html

Security hardening
● Panic after multiple Oops or WARN events

● Can protect against exploits that crash a lot
● Limits configurable with sysctl

● New options for Control Flow Integrity (CFI):
● [arm64] Boot-time choice of ROP protection:

software shadow stacks or hardware PAC
● [x86] FineIBT combines h/w Indirect Branch

Tracking (IBT) and s/w type check
● Clang still required for software CFI

● [s390x] Option to clear kernel stack on system call
exit (STACKLEAK)

[x86] CPU bug mitigations

● Straight Line Speculation (SLS): speculation past unconditional branch or RET
● Mitigation: compiler adds INT3 instructions

● Retbleed: train indirect branch predictor to mispredict return addresses
● Mitigation: IBRS on Intel, return thunk on AMD

● Zenbleed: use-after-free in the vector register file — non-speculative!
● Mitigation: microcode fix, set “chicken bit”, or disable AVX

● Gather Data Sampling (GDS): speculative access to stale vector register contents
● Mitigation: microcode fix or disable AVX

● Speculative Return Stack Overflow (SRSO): train indirect branch predictor to train
the return address predictor to mispredict RET instructions

● Mitigation: it’s complicated

Packaging changes (1)

● Enabled support for Arm Coresight, many Intel CPU features, and CXL bus
● Changes to ABI “number” in kernel release string and package names:

● Experimental uploads use 0 (instead of rcX or trunk)

● Backports use 0.debREL.ORIG (distinguishing backports across multiple releases)

● linux-kbuild packages now also incorporate the ABI “number”

● Enabled support for various SoCs/platforms:
● [arm64] Allwinner H6, Qualcomm SDA845; Renesas

RZ/G2{L,M}; Rockchip RK{3328,3399,356x}

● [armhf] NXP i.MX7

● [riscv64] Allwinner D1, D1s; Microchip Polarfire; Renesas
R9A07G043; StarFive JH7110

Packaging changes (2)

● Fixes and improvements to the test-patches script:
● Make all packages installable and coinstallable

● Build faster: no fakeroot, no debug info

● [arm64,armhf] Enabled sound and speakup udebs for speech synthesis in the
installer

● Enabled hardening options:
● Kernel Electric Fence (KFENCE) partially mitigates buffer

overflows and use-after-free; needs to be enabled at boot time

● [arm64,powerpc,s390x,x86] Randomised kernel stack offset
mitigates exploits that rely on uninitialised stack structures

● Disabled TIOCSTI – blocks privilege escalation through
injecting input into privileged program sharing the terminal

Questions?

Credits & License

● Content by Ben Hutchings
www.decadent.org.uk/ben/talks/
License: GPL-2+

● Original OpenOffice.org template by Raphaël Hertzog
raphaelhertzog.com/go/ooo-template
License: GPL-2+

● Background based on “Serenity” theme by Edward Padilla
wiki.debian.org/DebianArt/Themes/serenity
License: GPL-2

https://www.decadent.org.uk/ben/talks/
http://raphaelhertzog.com/go/ooo-template
https://wiki.debian.org/DebianArt/Themes/serenity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

